SLUA: Towards Semantic Linking of Users with Actions in Crowdsourcing


Recent advances in web technologies allow people to help solve complex problems by performing online tasks in return for money, learning, or fun. At present, human contribution is limited to the tasks defined on individual crowdsourcing platforms. Furthermore, there is a lack of tools and technologies that support matching of tasks with appropriate users, across multiple systems. A more explicit capture of the semantics of crowdsourcing tasks could enable the design and development of matchmaking services between users and tasks. The paper presents the SLUA ontology that aims to model users and tasks in crowdsourcing systems in terms of the relevant actions, capabilities, and rewards. This model describes different types of human tasks that help in solving complex problems using crowds. The paper provides examples of describing users and tasks in some real world systems, with SLUA ontology.

Proceedings of the 1st International Workshop on Crowdsourcing the Semantic Web